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91405 Orsay Cedex, France

Received 5 October 1999 and Received in final form 19 November 1999

Abstract. Effects of backward scattering between fractional quantum Hall (FQH) edge modes are studied.
Based on the edge-state picture for hierarchical FQH liquids, we discuss the possibility of the transitions
between different plateaux of the tunneling conductance G. We find a selection rule for the sequence which
begins with a conductance G = m/(mp± 1) (m: integer, p: even integer) in units of e2/h. The shot-noise
spectrum as well as the scaling behavior of the tunneling current is calculated explicitly.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 73.20.Dx Electron states in
low-dimensional structures (superlattices, quantum well structures and multilayers) – 73.40.Hm Quantum
Hall effect (integer and fractional)

1 Introduction

The fractional quantum Hall (FQH) effect is a phe-
nomenon observed in a two-dimensional electron system
subjected to a strong perpendicular magnetic field. Due to
the interplay between the strong magnetic field and inter-
actions among the electrons as well as weak disorder, the
transverse resistivity shows a plateau behavior [1]. For a
filling factor ν = 1/(odd integer), the theory predicts frac-
tionally charged quasiparticles with charge q = νe [2]. Re-
cent shot-noise experiments in a two-terminal FQH system
with a point-like constriction or a point quantum contact
(QPC) between the edges seem to be consistent with this
theoretical prediction [3]. The FQH system which have
any experimental relevance should be confined in a finite
region enclosed by one or more edges. Due to the presence
of strong magnetic field, the low-energy physics of this
two-dimensional electron liquid reduces essentially to that
of the one-dimensional edge mode. In one dimension it is
known that the interaction plays a significant role. The
electrons are strongly renormalized so that the Fermi liq-
uid theory breaks down to be replaced by the Tomonaga-
Luttinger liquid (TLL) [4]. If one considers spinless elec-
trons in 1D, the power-law decaying correlation functions
of TLL are completely characterized by one parameter
g which represents the strength of interaction. Therefore
the parameter g for an interacting electron system in 1D
is not universal. On the other hand a remarkable feature
of FQH edge mode is that the parameter g which controls
this 1D system is universal, since g is related to the topo-
logical nature of the bulk FQH liquid (FQHL). For the
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edge mode of principal Laughlin states, the parameter g
is simply given by the bulk filling factor ν [5].

The edge-tunneling experiment in FQH liquids has
shown that a chiral TLL is realized at the edge of
FQHL [6]. Indeed the chiral TLL theory has succeeded
in the description of non-linear I − V characteristics for
ν = 1/(odd integer) [7], but it is also true that the edge-
tunneling experiment cannot be explained by a naive TLL
theory for other filling factors [8,9]. In particular, for the
Jain’s composite fermion hierarchy states at filling factor
ν = m/(mp+χ) (m: integer, p: even integer, χ = ±1) [10],
Wen’s chiral TLL theory predicts that there should be
m edge modes corresponding to each composite fermion
Landau level [11]. Due to the existence of these internal
degrees of freedom the predicted exponent α for the I−V
characteristics does not fit the experiment: α ∼ 1/ν.

Although the observed exponent α ∼ 1/ν for the tun-
neling into FQHL does not support the hierarchical struc-
ture of edge mode, there is another experimental observa-
tion which encourages us to work on this theory. It is the
suppressed shot-noise measurement at bulk filling factor
ν = 2/5, i.e., at m = 2, p = 2, χ = 1 in a constricted
two-terminal Hall bar geometry [12]. They observed the
transitions of two-terminal conductance from a plateau at
G = 2/5 to another at G = 1/3 and finally to G = 0 as the
constriction is increased. On the plateau at G = 1/3 they
observed a fractional charge q = e/3, which indicates that
the filling factor near the quantum point contact (QPC) is
ν = 1/3. The experiment clearly indicates a deep connec-
tion between the ν = 2/5 daughter state and the ν = 1/3
parents state, and therefore seems to support the hierar-
chy theory at ν = 2/5.

This paper studies the tunneling through a QPC at
the edge of FQHL. This topic has captured a widespread
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attention both experimentally and theoretically. For the
reasons stated above we focus on the filling factor ν =
m/(mp + χ). The FQH systems at those filling factors
will provide an interesting arena to study the hierarchical
nature of those liquids. We discuss the successive transi-
tion between the plateaux of conductance. The sequence
begins with the conductance G = Gm = m/(mp + χ) in
units of e2/h, which is identical to the bulk filling factor.
We discuss the selection rule for the transitions between
different G’s. Even though the eventual correctness of the
hierarchical TLL theory description is yet to be tested, on
which we will be based, we insist that it is of importance
to make various interesting applications of the theory. It
will enable us to compare the experiment with the theo-
retical predictions, and hence will be useful to judge the
correctness of hierarchical picture.

2 Model

Our model has a two-terminal Hall bar geometry. The
bulk FQHL in the xy-plane is confined electro-statically
on the y-direction into a finite region: −w/2 < y < w/2.
Each end of this strip is connected to a source (the left
terminal) or to a drain (the right terminal). We assume
that the bulk FQHL is incompressible at a filling factor ν.
Therefore the low-energy excitations are allowed only in
the vicinity of two boundaries, which constitute the edge
modes. The upper (lower) edge mode carries a current
from the left (right) to the right (left) terminal, and the
total current I is defined as the difference of the two. Since
there is no mechanism of relaxation in the TLL itself, the
chemical potential is uniform in the respective edge modes,
i.e., the upper (lower) edge mode has a chemical potential
equal to that of the source (drain). All the scatterings
occur inside the terminals [13]. In the absence of point-
like constriction, the two-terminal conductance G = I/V
is quantized at G = ν in units of e2/h, since the back-
scattering between the two edge modes which breaks the
momentum conservation is allowed nowhere through the
edge, where V is defined as the source-drain voltage.

Now we go back to the bulk FQHL. We focus on a
filling factor ν = m/(mp + χ) in the Jain’s composite
fermion hierarchy series, where m: integer, p: even inte-
ger and χ = ±1. According to the bulk hierarchy struc-
ture, there should be m edge modes, i.e., each edge mode
corresponds to a composite fermion Landau level in the
bulk. Then the low-energy physics of this electron liquid
is controlled by the m-channel edge mode, which obey the
following Lagrangian density [11]

LTLL =
i

4π
Kαβ ∂φ

+
α

∂τ

∂φ−β
∂x

+
1

8π
Uαβ

(
∂φ+

α

∂x

∂φ+
β

∂x
+
∂φ−α
∂x

∂φ−β
∂x

)
, (1)

where φ± = φu ± φl with φu(φl) being the edge mode
propagating near the upper (lower) boundary of the sys-
tem. The matrix K in equation (1) could be identified as

the so-called K-matrix in the bulk, which together with
the electromagnetic charge vector t as well as the vortex
charge vector l completely specify the universal properties
of bulk FQHL [14]. In terms of TLL, K is a matrix gen-
eralization of the parameter g, which was simply given by
g = ν for the one-channel case (the edge mode of a prin-
cipal Laughlin state). The standard construction for the
K-matrix at a hierarchical filling factor ν = m/(mp+ χ)
yields

K = K(m, p, χ) = χIm + pCm (2)

in the unitary basis tT = (1, · · ·, 1), where Im, Cm are
m×m identity and pseudo-identity matrices. By a linear
transformation one can decompose the modes into charge
and pseudo-spin bosons. Each row and column of the ma-
trices corresponds to a Landau level for the composite
fermions, i.e., α, β = 1, · · ·,m. However it would be fair
to comment that it is still a controversial question what
the correct construction of the K-matrix is [15]. The ma-
trix U in equation (1) is a positive definite matrix, which
specifies among others the velocities of the edge modes.
For χ = 1 charge and pseudo-spin modes propagate in the
same direction (co-propagate), whereas for χ = −1 they
are counter-propagating, i.e., χ stands for the chirality of
the edge modes. For the latter case (χ = −1), the interac-
tion between the edge modes can make the conductance
non-universal. The observed conductance, on the contrary,
seems to be universal. A remedy for this puzzle would be
to put disorder along the edge [16]. In the presence of such
disorder our conclusions will be modified, however, which
will not be discussed in the body of the paper.

Now we introduce the back-scattering by pinching the
Hall bar, i.e., by breaking the global translational invari-
ance at x = 0. Let us think of applying a gate voltage
locally in the middle of Hall bar. It squeezes the Hall bar
and makes a quantum point contact (QPC) between the
two edges. The QPC introduces the tunneling of quasi-
particle through the pinched region of Hall bar. In the
TLL model it corresponds to a backward scattering and
hence could be described by a periodic potential barrier
for the bosonic fields [17]. Let us remember that we are
focusing on the bulk filling factor νbulk = m/(mp+χ). Ac-
cording to the Jain’s composite fermion hierarchy, there
should be m filled composite fermion Landau levels in the
bulk, and accordingly m types of elementary quasiparti-
cles. Each correspond to a vortex-charge vector l = lj
where (lj)α = δαj (j, α = 1, · · ·,m) with δαj being unity for
α = j and vanishes otherwise [18]. The fractional charge
carried by the quasiparticle l is given in general as

q/e = tTK−1l =
1

mp+ χ

m∑
α=1

lα. (3)

For the elementary quasiparticles l = lj one finds q =
e/(mp + χ), which is indeed the smallest possible value.
For m = 2, p = 2, χ = 1, i.e., q = e/5 they could be
identified as the current-carrying particles observed in the
recent shot-noise experiment at ν = 2/5 [12].
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The tunneling of quasiparticle on the jth composite
fermion Landau level induces a potential barrier propor-
tional to δ(x) cosφ+

j . Since the scattering amplitude would
be different for different types of quasiparticles, the tun-
neling of these elementary quasiparticles sums up to the
following scattering potential barrier:

L(I)
tun =

m∑
j=1

ujδ(x) cosφ+
j . (4)

We call it the scattering potential due to the tunneling
of class [I] quasiparticles. In equation (4) we took into
account only the “intra-Landau-level” processes.

Now I draw your attention to another class of quasipar-
ticles, which we call class [II]. It consists of m elementary
quasiparticles. The vortex-charge vector assigned to this
class [II] quasiparticle is lT = (1, · · ·, 1). In this combi-
nation of the bosonic fields all the neutral modes cancel
and the tunneling of such quasiparticles do not accompany
any neutral modes. The fractional charge carried by this
quasiparticle is found to be q/e = m/(mp+χ) = ν. In the
bosonic language it can be written as φc = φ1 + · · ·+ φm,
which indeed corresponds to the charge mode. The scat-
tering potential due to the class [II] quasiparticle tunneling
operator can be written as

L(II)
tun = uδ(x) cosφ+

c . (5)

Now our total Lagrangian density reads Ltotal = LTLL +
L(I)

tun + L(II)
tun.

In the RG analysis in Section 4, we study the scaling
behavior of uj ’s and u, which are controlled by the scal-
ing dimensions of the quasiparticle tunneling operators:
cosφ+

j and cosφ+
c . They are given by ∆I = ν/m2+1−1/m

for the class [I] quasiparticles, whereas ∆II = ν for the
class [II] quasiparticle, where ν = m/(mp + χ) [7]. If
the scaling dimension is smaller than 1, the correspond-
ing tunneling amplitude tends to have stronger values as
the voltage or the temperature is lowered. It is indeed
the case both for uj’s and u. In the parameter region
{(m, p)|m ≥ 2, p ≥ 2} in which we are interested, one
can prove that{

∆I = ∆II for χ = −1,m = 2, p = 2 (ν = 2/3)
∆I > ∆II otherwise

,

(6)

i.e., the class [II] quasiparticles have a lower scaling di-
mension in most of the cases, and hence more relevant
in the RG sense. Another important observation is that
there would be at least two ways how the scattering be-
comes stronger. One way is, as we have described above, to
increase its amplitude. However it would be also possible
that higher-order cascade of scatterings becomes impor-
tant, where the single QPC description is no longer valid.
One might have to take into account the resonance in such
non-perturbative regime.

3 Hypotheses

In Section 2 we gave expressions to the possible tunneling
processes through a single QPC in terms of the bosonic
field φj or of its linear combination φc. We considered
two classes of quasiparticles. The class [I] corresponds to
the elementary quasiparticles with the smallest fractional
charge. The class [II] corresponds to the charge mode:
φc = φ1 + · · · + φm. We also compared the scaling di-
mensions of the two classes of quasiparticle tunneling op-
erators. Although the class [II] quasiparticles have a lower
scaling dimension in most of the cases and more relevant
in the RG sense, it is not unlikely that the class [II] is
negligible for some reason; since they are bound states of
m elementary quasiparticles, they are so scarcely created
that the scattering potential (5) could not develop enough
to be effective at the energy scales in question despite its
relevant scaling dimension. Therefore we are encouraged
to consider the following cases:

1. Case [A]: class [II] quasiparticles are negligible for some
reason. Furthermore the tunneling amplitudes for each
channel j have different orders of magnitude:

um � um−1 � · · · � u1. (7)

2. Case [B]: class [II] is still negligible, but some uj’s have
comparable orders of magnitude;

uj+1 � uj ∼ · · · ∼ uj−k+1 � uj−k, (8)

where k ≥ 2 is an integer.
3. Case [C]: class [II] is no longer negligible, i.e., the am-

plitudes u for the class [II] quasiparticle has a compa-
rable magnitude with those for uj’s.

The assumption (7) for case [A] might be justified in a
way analogous to the edge-channel argument for integer
quantum Hall effect (IQH) [19]. Let us consider the Lan-
dau levels for composite fermions. The lowest m Landau
levels are completely filled by the composite fermions, and
the chemical potential lies between the mth and (m+1)th
Landau levels. Towards the edge of the sample each en-
ergy level tends to be lifted up by the confining potential.
Since the jth edge mode lies in where the chemical po-
tential crosses the jth energy level, each edge channels
are spatially separated. Therefore the tunneling between
the mth edge modes, the spatially closest ones, is sup-
posed to have a much larger amplitude than the other
m − 1 channels. It is also the case for um−1 compared
with the remaining m− 2 channels and so forth. I would
like to mention an experiment which encourages us to
employ the assumptions (6). It is the suppressed shot-
noise measurement at bulk filling factor ν = 2/5, i.e., at
m = 2, p = 2, χ = 1 [12]. They observed the transitions
of two-terminal conductance from a plateau at G = 2/5
to another at G = 1/3 and finally to G = 0 as the con-
striction is increased. On the plateau at G = 1/3 they
observed a fractional charge q = e/3, which indicates
that the filling factor near the QPC is ν = 1/3. Hence a
single-channel edge mode described by a 1× 1 K-matrix;
K = 3 is expected near the QPC [20]. On the other hand
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in the region where the physics is completely unaffected by
the gate, the matrix K should be given by K = K(2, 2, 1).
This experiment not only indicates a deep connection be-
tween the ν = 2/5 daughter state and the ν = 1/3 parents
state. It also implies that u2 � u1 as well as u is negligibly
small.

We have explained above a physical reason why we
are interested in the parameter region (7). However we
have another example where the assumption (8) seems
to be reasonable. It is the spin-singlet state at ν = 2/3
(m = 2, p = 2, χ = −1), where j = 1, 2 corresponds
to each spin indices instead of each Landau level for the
spin-polarized state. If we neglect the Zeeman energy, the
theory should be symmetric in terms of the two spin com-
ponents. Therefore it seems more reasonable to assume in
this case as u1 ∼ u2, which belongs to our case [B] [21].

4 RG flow and critical phenomena

Let us forget for the moment the class (II) quasiparticles.
Then we consider the renormalization group (RG) phase
diagram in the m-dimensional space of u = (u1, · · ·, um).
The origin of this plane corresponds to the conductance
plateau at G = m/(mp+χ) = νbulk. A standard RG anal-
ysis shows that only the fixed point at u = (∞, · · ·,∞),
is infra-red (IR) stable, since all uj’s are found to be rel-
evant. We introduce a small negative gate voltage to the
system on the conductance plateau at G = Gm. We fix the
gate voltage so that the scaling at the zero temperature
should be controlled by the voltage difference qV between
the two reservoirs. Now we ask where the initial point of
our RG flow is.

4.1 Successive transitions

Let us consider the case [A]. Our RG flow starts from a
point in the vicinity of the origin (unstable fixed point)
where equation (7): um � um−1 � · · · � u1 is satisfied.
As the voltage is decreased, all uj ’s scale to larger values.
But due to the assumption (7) um increases much faster
than the other m − 1 channels. Therefore our RG path
flows into the domain Dm−1, where Dj (j = 1, · · ·,m− 1)
is defined as

Dj = {(u1, · · ·, um)|um, · · ·, uj+1 > ucrtc � uj, · · ·, u1},
(9)

ucrtc is a critical value of the tunneling amplitudes such
that the phase φj is pinned when uj > ucrtc in order
for g to be quantized. In reality ucrtc is determined by
the strength of impurity potential which could retain the
induced quasiparticles at the impurity cite. In the domain
Dm−1 the effective K-matrix near the PC reduces to K =
K(m−1, p, χ). Therefore one could indentify Dm−1 to the
plateau of conductance at G = Gm−1. However since the
domain Dm−1 corresponds to a saddle region of the RG
flow, our RG path flows away from Dm−1 and goes toward
the next saddle region Dm−2 defined in the same way as

U2

U3

U1

D1
D2

U

Case 1

Case 3

Case 2 D0

D2D2D2

D3

Fig. 1. RG phase diagram in the u-space for m = 3, u =
(u1, u2, u3). Case 1 represents a RG flow corresponding to the
successive transitions which are expected when u3 � u2 � u1.
Case 2 represents a direct transition to the completely reflect-
ing phase D0, which happens when u3 ∼ u2 ∼ u1. A direct
transition to D0 is also expected for case 3, where the type (II)
scattering potential plays the role.

Dm−1. We further introduce the domain Dj in general for
j = 1, · · ·,m− 1. Our RG flow passes through Dj’s as

Dm−1 → Dm−2 → · · · → D1, (10)

and finally it flows into the attractive fixed point u =
(∞, · · ·,∞), which is identified as the completely reflecting
phase G = 0: the domain D0 (Fig. 1). The exceptions are
the series belonging to χ = −1, p = 2, i.e., the ν = 2/3
state and its daughter states. For those filling factors our
RG stops at the G = 1 plateau [20,22]. In the following we
consider the other cases. As the RG path flows from the
vicinity of the origin toward the G = 0 phase, the effective
K-matrix near the PC changes as

K(m, p, χ)→ K(m− 1, p, χ)→ · · · → K(1, p, χ)
= p+ χ→ insulator. (11)

Correspondingly we predict the following successive
plateau transitions,

Gm → Gm−1 → · · · → G1 =
1

p+ χ
→ 0. (12)

One might think the above result is very close to the
“global phase diagram” in the quantum Hall effect [23].
Though it indeed is, it differs in that the direction of the
transition is specified in our case. Anomalous transitions
(Gj → Gj−k for k ≥ 2) are forbidden as far as the as-
sumption (6) is satisfied.

I would like to deduce the scaling behavior of the tun-
neling current and the shot-noise spectrum on the plateau
G = Gj (j = 1, · · ·,m). The back-scattering current
Ib = ν(e2/h)V − I can be calculated perturbatively with
respect to uj−1 and obtained as [5]

〈Ib〉 =
2πq

Γ [2∆I]
|uj−1|2

a2∆I−2

v
2ν/m2

c v
2(1−1/m)
s

(qV )2∆I−1, (13)

where q = e/(jp + χ) is a fractional charge of the ele-
mentary quasiparticle on the plateau G = Gj , and ∆I is
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a scaling dimension of the type (I) quasiparticle tunnel-
ing operator: ∆I = ν/m2 + 1− 1/m. a is a short-distance
cutoff, and vc and vs are velocities of the charge and the
pseudo-spin modes, respectively. The shot-noise spectrum

S(ω) =
∫ ∞
−∞

dt cosωt〈{Ib(t), Ib(0)}〉 (14)

is also calculated perturbatively to give, S(ω) = q〈Ib〉(|1−
ω/qV |2∆I−1 + |1 + ω/qV |2∆I−1), which reduces to S =
2q〈Ib〉 in the white-noise limit (|ω| � qV ) [24]. They are
also calculated near the insulating phase to be S(ω) =
2e〈I〉 with

〈I〉 =
2πe

Γ [2(p+ χ)]
|ũ1|2a2(p+χ)−2ṽ1

−2(p+χ)(eV )2(p+χ)−1,

(15)

where ũ1 represents the strength of electron tunneling dual
to u1 and ṽ1 a corresponding velocity.

4.2 Anomalous transition

Let us turn to the case [B], where the type [II] quasipar-
ticles are still negligible, but some uj ’s have comparable
orders of magnitude. Here we consider a particular case
of the assumption (7); we consider the case where all uj’s
have comparable orders of magnitude:

um ∼ um−1 ∼ · · · ∼ u1. (16)

In this case a direct transition from G = Gm to G = 0
is expected, since all φj ’s tend to be pinned at the same
speed. The shot-noise spectrum on the plateau at G = Gm
is given by S(ω) = 2q〈Ib〉 for |ω| � qV with

〈Ib〉 =
2πq

Γ [2∆I]

m∑
j=1

|uj|2
a2∆I−2

v
2ν/m2

c v
2(1−1/m)
s

(qV )2∆I−1. (17)

Now we turn our discussion to the insulating phase:G = 0.
Remember each vortex-charge vector l with integer ele-
ments corresponds to a quasiparticle which has a charge
given by (3). To construct an electron operator, we have
only to set equation (3) to be equal to 1. Of course, there
is in principle an infinite number of choice of l to make it
identical to unity. However, as far as the tunneling is con-
cerned, we can pick up most relevant electron operators,
which are found to be [18]

l = l̃j , (l̃j)α = p+ χδαj , (18)

where j = 1, · · ·,m and each l̃j has m components, i.e.,
α = 1, · · ·,m. These electrons look analogous to our
class [I] quasiparticles. It indeed is, but we will see that the
relation is deeper. Before going into that, the scattering
potential barrier due to the tunneling of these “class [I]
electrons” can be written as

L̃(I)
tun =

m∑
j=1

ũjδ(x) cos

[
m∑
α=1

(l̃j)αφ̃+
α

]
. (19)

Here the “inter-Landau-level” tunnelings are neglected
again. Note that the x-axis is taken along the edge which
is assumed to be completely reflected in the insulating
phase.

Let us take notice of the duality between the quasi-
particle tunneling and the electron tunneling, which is ex-
act when um = um−1 = · · · = u1 [21]. To see this, let
us go back to the weak-scattering phase, i.e., we start
with the Lagrangian density: Ltotal = LTLL + L(I)

tun. We
starts our RG from the vicinity of the origin in the m-
dimensional space of u = (u1, · · ·, um). We assume that
the condition (16) is satisfied. As the voltage is decreased,
all uj’s scale to larger values. Then one is encouraged to
employ the duality transformation, i.e., one considers the
tunneling of instantons between the potential minima [25].
Up to the lowest non-trivial order with respect to those
instantons, one obtains a model which has exactly the
same form as equation (19), where −ũj/2 corresponds to
an instanton fugacity whereas {φ̃+

α} is identified as a set
of bosonic fields dual to {φ+

α}.
The shot-noise spectrum in the insulating phase is

given by S(ω) = 2e〈I〉 for |ω| � qV with the tunneling
current I scaling as

〈I〉 =
2πe

Γ [2∆̃I]

m∑
j=1

|ũj |2
a2∆̃I−2

ṽ
2/ν
c ṽ

2(1−1/m)
s

(eV )2∆̃I−1. (20)

The scaling dimension ∆̃I of our class [I] electron tunnel-
ing operator is given by ∆̃I = 1/ν + 1 − 1/m. ṽc, ṽs are
velocities in the insulating phase.

4.3 Direct transition

Let us consider the case [C]. In this case we obtain still
different results. In the presence of class [II] quasiparticles,
the physics tends to be controlled by the scattering poten-
tial u as the energy in question is lowered. In the region
where u1, · · ·, um � u � qV is satisfied, i.e., G ∼ Gm,
one obtains S(ω) = 2q〈Ib〉 with

〈Ib〉 =
2πq

Γ [2∆II]
|u|2a2∆II−2v−2∆II

c (qV )2∆II−1. (21)

The fractional charge of the class [II] quasiparticle is iden-
tical to the bulk filling factor: q/e = m/(mp + χ) =
ν, which is also equal to the scaling dimension of the
corresponding quasiparticle tunneling operator: ∆II =
m/(mp+ χ) = ν. As the RG path flows into the strong-
scattering phase, the conductance G shows a direct tran-
sition to G = 0 again. However the scaling behavior of
the tunneling current in the insulating phase is less clear.
The reason is that the duality is not existing in this case
so that the physical interpretation of the strong-scattering
phase Lagrangian is lacking.

5 Summary: the selection rule

In summary we obtained the following selection rules for
the transition between plateaux starting with the bulk
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value G = m/(mp+χ) = ν. For case [C] a direct transition
to the Hall insulator is expected. For cases [A] (and [B])
successive transitions from one G to another G is allowed
under the following selection rule:

g = ν(j, p, χ)→ g = ν(j′, p′, χ′)

j′ = j − 1, p′ = p, χ′ = χ. (22)

An anomalous transition j → j − k (k > 2: integer) is
expected between the same p and χ when the condition (8)
is satisfied.

The overall picture of the system which results from
the plateaux transitions discussed above is the following.
We started with the situation where the filling factor is ex-
tended uniformly over the whole system, i.e., equal to the
bulk value ν = m/(mp+χ). Then we effectively increased
the gate voltage in units of the voltage difference V be-
tween the two terminals. We found successive transitions
of the conductance (12) when the condition (7) is satis-
fied. The question is what happens between the QPC and
the bulk FQHL. Each time G passes through one plateau
(G = Gj), there should appear one additional incompress-
ible strip with a filling factor ν = j/(jp+ χ).

Before ending this paper, I mention that the edge-
confining potential is assumed to be steep through the
paper enough to avoid the complexities which may arise
when the confining potential is smooth [26,27]. In conclu-
sion we studied the successive transitions of conductance
between different plateaux of hierarchical FQHL. The scal-
ing behavior of the tunneling current and the shot-noise
spectrum are calculated perturbatively on each plateau of
the conductance. We discussed the selection rules for the
transition between different plateaux of the conductance
in order that the theory could be tested by the experi-
ments.

This paper is an extension and a generalization of an earlier pa-
per with K. Nomura (Ref. [20]). I am grateful to him for useful
discussions and a collaboration. I am also grateful to Y. Morita
for a key comment to initiate the present work. I would like to
thank P. Lederer and N. Nagaosa for their suggestions and en-
couragements. I would like to acknowledge the kind hospitality
during my participation in the Trimestre Fermions Fortement
Correles (IHP, Paris). I was supported by JSPS Research Fel-
lowships for Young Scientists, and am supported by Ministère
de l’Éducation Nationale, de la Recherche et de la Technologie.
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